700 research outputs found

    Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson's disease.

    Get PDF
    BackgroundParkinson's disease (PD) is one of the most common causes of dementia and motor deficits in the elderly. PD is characterized by the abnormal accumulation of the synaptic protein alpha-synuclein (Ī±-syn) and degeneration of dopaminergic neurons in substantia nigra, which leads to neurodegeneration and neuroinflammation. Currently, there are no disease modifying alternatives for PD; however, targeting neuroinflammation might be a viable option for reducing motor deficits and neurodegeneration. Lenalidomide is a thalidomide derivative designed for reduced toxicity and increased immunomodulatory properties. Lenalidomide has shown protective effects in an animal model of amyotrophic lateral sclerosis, and its mechanism of action involves modulation of cytokine production and inhibition of NF-ĪŗB signaling.MethodsIn order to assess the effect of lenalidomide in an animal model of PD, mThy1-Ī±-syn transgenic mice were treated with lenalidomide or the parent molecule thalidomide at 100 mg/kg for 4 weeks.ResultsLenalidomide reduced motor behavioral deficits and ameliorated dopaminergic fiber loss in the striatum. This protective action was accompanied by a reduction in microgliosis both in striatum and hippocampus. Central expression of pro-inflammatory cytokines was diminished in lenalidomide-treated transgenic animals, together with reduction in NF-ĪŗB activation.ConclusionThese results support the therapeutic potential of lenalidomide for reducing maladaptive neuroinflammation in PD and related neuropathologies

    Signalling crosstalk in FGF2-mediated protection of endothelial cells from HIV-gp120

    Get PDF
    BACKGROUND: The blood brain barrier (BBB) is the first line of defence of the central nervous system (CNS) against circulating pathogens, such as HIV. The cytotoxic HIV protein, gp120, damages endothelial cells of the BBB, thereby compromising its integrity, which may lead to migration of HIV-infected cells into the brain. Fibroblast growth factor 2 (FGF2), produced primarily by astrocytes, promotes endothelial cell fitness and angiogenesis. We hypothesized that treatment of human umbilical vein endothelial cells (HUVEC) with FGF2 would protect the cells from gp120-mediated toxicity via endothelial cell survival signalling. RESULTS: Exposure of HUVEC to gp120 resulted in dose- and time-dependent cell death; whereas, pre-treatment of endothelial cells with FGF2 protected cells from gp120 angiotoxicity. Treatment of HUVEC with FGF2 resulted in dose- and time-dependent activation of the extracellular regulated kinase (ERK), with moderate effects on phosphoinositol 3 kinase (PI3K) and protein kinase B (PKB), also known as AKT, but no effects on glycogen synthase kinase 3 (GSK3Ī²) activity. Using pharmacological approaches, gene transfer and kinase activity assays, we show that FGF2-mediated angioprotection against gp120 toxicity is regulated by crosstalk among the ERK, PI3K-AKT and PKC signalling pathways. CONCLUSIONS: Taken together, these results suggest that FGF2 may play a significant role in maintaining the integrity of the BBB during the progress of HIV associated cerebral endothelial cell damage

    Neuroprotective effects of Cerebrolysin in triple repeat Tau transgenic model of Pick's disease and fronto-temporal tauopathies.

    Get PDF
    BackgroundTauopathies are a group of neurodegenerative disorders with accumulation of three-repeat (3R) or four-repeat (4R) Tau. While 3R tau is found in Pick's disease and Alzheimer's disease (AD), 4R tau is more abundant in corticobasal degeneration, progressive supranuclear palsy, and AD. We have previously shown that Cerebrolysinā„¢ (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the pathology in amyloid precursor protein transgenic (tg) mouse model of AD and 4R tau, however it is unclear if CBL ameliorates the deficits and neuropathology in the mouse model of Pick's disease over expressing 3R tau.ResultsMice expressing 3R tau (L266V and G272V mutations) under the mThy-1 promoter were treated with CBL in two separate groups, the first was 3 months old (treated for 3 months, IP) and the second was 6 months old (treated for 3 months, IP) at the start of the treatment. We found that although the levels of total 3R tau were unchanged, CBL reduced the levels of hyper-phosphorylated tau in both groups of mice. This was accompanied by reduced neurodegenerative pathology in the neocortex and hippocampus in both groups and by improvements in the behavioral deficits in the nest-building test and water maze in the 3-6 month group.ConclusionTaken together these results support the notion that CBL may be beneficial in other taupathy models by reducing the levels of aberrantly phosphorylated tau

    Neuroprotective effects of the immunomodulatory drug FK506 in a model of HIV1-gp120 neurotoxicity.

    Get PDF
    BackgroundHIV-associated neurocognitive disorders (HAND) continue to be a common morbidity associated with chronic HIV infection. It has been shown that HIV proteins (e.g., gp120) released from infected microglial/macrophage cells can cause neuronal damage by triggering inflammation and oxidative stress, activating aberrant kinase pathways, and by disrupting mitochondrial function and biogenesis. Previous studies have shown that FK506, an immunophilin ligand that modulates inflammation and mitochondrial function and inhibits calcineurin, is capable of rescuing the neurodegenerative pathology in models of Parkinson's disease, Alzheimer's disease, and Huntington's disease. In this context, the main objective of this study was to evaluate if FK506 could rescue the neuronal degeneration and mitochondrial alterations in a transgenic (tg) animal model of HIV1-gp120 neurotoxicity.MethodsGFAP-gp120 tg mice were treated with FK506 and analyzed for neuropathology, behavior, mitochondrial markers, and calcium flux by two-photon microscopy.ResultsWe found that FK506 reduced the neuronal cell loss and neuro-inflammation in the gp120 tg mice. Moreover, while vehicle-treated gp120 tg mice displayed damaged mitochondria and increased neuro-inflammatory markers, FK506 rescued the morphological mitochondrial alterations and neuro-inflammation while increasing levels of optic atrophy 1 and mitofusin 1. By two-photon microscopy, calcium levels were not affected in the gp120 tg mice and no effects of FK506 were detected. However, at a functional level, FK506 ameliorated the gp120 tg mice hyperactivity in the open field.ConclusionsTogether, these results suggest that FK506 might be potentially neuroprotective in patients with HAND by mitigating inflammation and mitochondrial alterations

    Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability

    Get PDF
    AbstractIntroductionLoss of synapses best correlates to cognitive deficits in Alzheimer's disease (AD) in which oligomeric neurotoxic species of amyloid-Ī² appears to contribute synaptic pathology. Although a number of clinical pathologic studies have been performed with limited sample size, there are no systematic studies encompassing large samples. Therefore, we performed a meta-analysis study.MethodsWe identified 417 publications reporting postmortem synapse and synaptic marker loss from AD patients. Two meta-analyses were performed using a single database of subselected publications and calculating the standard mean differences.ResultsMeta-analysis confirmed synaptic loss in selected brain regions is an early event in AD pathogenesis. The second meta-analysis of 57 synaptic markers revealed that presynaptic makers were affected more than postsynaptic markers.DiscussionThe present meta-analysis study showed a consistent synaptic loss across brain regions and that molecular machinery including endosomal pathways, vesicular assembly mechanisms, glutamate receptors, and axonal transport are often affected

    Cerebrolysinā„¢ efficacy in a transgenic model of tauopathy: role in regulation of mitochondrial structure.

    Get PDF
    BackgroundAlzheimer's Disease (AD) and Fronto temporal lobar dementia (FTLD) are common causes of dementia in the aging population for which limited therapeutical options are available. These disorders are associated with Tau accumulation. We have previously shown that Cerebrolysinā„¢ (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the behavioral deficits and neuropathological alterations in amyloid precursor protein (APP) transgenic (tg) mouse model of AD by reducing hyper-phosphorylated Tau. CBL has been tested in clinical trials for AD, however it's potential beneficial effects in FTLD are unknown. For this purpose we sought to investigate the effects of CBL in a tg model of tauopathy. Accordingly, double tg mice expressing mutant Tau under the mThy-1 promoter and GSK3Ī² (to enhance Tau phosphorylation) were treated with CBL and evaluated neuropathologically.ResultsCompared to single Tau tg mice the Tau/GSK3Ī² double tg model displayed elevated levels of Tau phosphorylation and neurodegeneration in the hippocampus. CBL treatment reduced the levels of Tau phosphorylation in the dentate gyrus and the degeneration of pyramidal neurons in the temporal cortex and hippocampus of the Tau/GSK3Ī² double tg mice. Interestingly, the Tau/GSK3Ī² double tg mice also displayed elevated levels of Dynamin-related protein-1 (Drp-1), a protein that hydrolyzes GTP and is required for mitochondrial division. Ultrastructural analysis of the mitochondria in the Tau/GSK3Ī² double tg mice demonstrated increased numbers and fragmentation of mitochondria in comparison to non-tg mice. CBL treatment normalized levels of Drp-1 and restored mitochondrial structure.ConclusionsThese results suggest that the ability of CBL to ameliorate neurodegenerative pathology in the tauopathy model may involve reducing accumulation of hyper-phosphorylated Tau and reducing alterations in mitochondrial biogenesis associated with Tau

    Bridging Molecular Genetics and Biomarkers in Lewy Body and Related Disorders

    Get PDF
    Recent advances have been made in defining the genetic and molecular basis of dementia with Lewy bodies (DLBs) and related neurodegenerative disorders such as Parkinson's disease (PD) and Parkinson's disease dementia (PDD) which comprise the spectrum of ā€œLewy body disordersā€ (LBDs). The genetic alterations and underlying disease mechanisms in the LBD overlap substantially, suggesting common disease mechanisms. As with the other neurodegenerative dementias, early diagnosis in LBD or even identification prior to symptom onset is key to developing effective therapeutic strategies, but this is dependent upon the development of robust, specific, and sensitive biomarkers as diagnostic tools and therapeutic endpoints. Recently identified mutations in the synucleins and other relevant genes in PD and DLB as well as related biomolecular pathways suggest candidate markers from biological fluids and imaging modalities that reflect the underlying disease mechanisms. In this context, several promising biomarkers for the LBD have already been identified and examined, while other intriguing possible candidates have recently emerged. Challenges remain in defining their correlation with pathological processes and their ability to detect DLB and related disorders, and perhaps a combined array of biomarkers may be needed to distinguish various LBDs

    Hippocampal neuronal cells that accumulate Ī±-synuclein fragments are more vulnerable to AĪ² oligomer toxicity via mGluR5--implications for dementia with Lewy bodies.

    Get PDF
    BackgroundIn dementia with Lewy bodies (DLB) abnormal interactions between Ī±-synuclein (Ī±-syn) and beta amyloid (AĪ²) result in selective degeneration of neurons in the neocortex, limbic system and striatum. However, factors rendering these neurons selectively vulnerable have not been fully investigated. The metabotropic glutamate receptor 5 (mGluR5) has been shown to be up regulated in DLB and might play a role as a mediator of the neurotoxic effects of AĪ² and Ī±-syn in vulnerable neuronal populations. In this context, the main objective of the present study was to investigate the role of mGluR5 as a mediator of the neurotoxic effects of Ī±-syn and AĪ² in the hippocampus.ResultsWe generated double transgenic mice over-expressing amyloid precursor protein (APP) and Ī±-syn under the mThy1 cassette and investigated the relationship between Ī±-syn cleavage, AĪ², mGluR5 and neurodegeneration in the hippocampus. We found that compared to the single tg mice, the Ī±-syn/APP tg mice displayed greater accumulation of Ī±-syn and mGluR5 in the CA3 region of the hippocampus compared to the CA1 and other regions. This was accompanied by loss of CA3 (but not CA1) neurons in the single and Ī±-syn/APP tg mice and greater loss of MAP 2 and synaptophysin in the CA3 in the Ī±-syn/APP tg. mGluR5 gene transfer using a lentiviral vector into the hippocampus CA1 region resulted in greater Ī±-syn accumulation and neurodegeneration in the single and Ī±-syn/APP tg mice. In contrast, silencing mGluR5 with a lenti-shRNA protected neurons in the CA3 region of tg mice. In vitro, greater toxicity was observed in primary hippocampal neuronal cultures treated with AĪ² oligomers and over-expressing Ī±-syn; this effect was attenuated by down-regulating mGluR5 with an shRNA lentiviral vector. In Ī±-syn-expressing neuronal cells lines, AĪ² oligomers promoted increased intracellular calcium levels, calpain activation and Ī±-syn cleavage resulting in caspase-3-dependent cell death. Treatment with pharmacological mGluR5 inhibitors such as 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) attenuated the toxic effects of AĪ² in Ī±-syn-expressing neuronal cells.ConclusionsTogether, these results support the possibility that vulnerability of hippocampal neurons to Ī±-syn and AĪ² might be mediated via mGluR5. Moreover, therapeutical interventions targeting mGluR5 might have a role in DLB

    Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ī±-synuclein [Ī±-Syn]-mediated activation of GSK-3Ī² leading to increases in hyperphosphorylated Tau has been shown by us to occur in striata of Parkinson's diseased [PD] patients and in animal models of PD. In Alzheimer's disease, tauopathy exists in several brain regions; however, the pattern of distribution of tauopathy in other brain regions of PD or in animal models of PD is not known. The current studies were undertaken to analyze the distribution of tauopathy in different brain regions in a widely used mouse model of PD, the Ī±-Syn overexpressing mouse.</p> <p>Results</p> <p>High levels of Ī±-Syn levels were seen in the brain stem, with a much smaller increase in the frontal cortex; neither cerebellum nor hippocampus showed any overexpression of Ī±-Syn. Elevated levels of p-Tau, hyperphosphorylated at Ser202, Ser262 and Ser396/404, were seen in brain stem, with lower levels seen in hippocampus. In both frontal cortex and cerebellum, increases were seen only in p-Ser396/404 Tau, but not in p-Ser202 and p-Ser262. p-GSK-3Ī² levels were not elevated in any of the brain regions, although total GSK-3Ī² was elevated in brain stem. p-p38MAPK levels were unchanged in all brain regions examined, while p-ERK levels were elevated in brain stem, hippocampus and cerebellum, but not the frontal cortex. p-JNK levels were increased in brain stem and cerebellum but not in the frontal cortex or hippocampus. Elevated levels of free tubulin, indicating microtubule destabilization, were seen only in the brain stem.</p> <p>Conclusion</p> <p>Our combined data suggest that in this animal model of PD, tauopathy, along with microtubule destabilization, exists primarily in the brain stem and striatum, which are also the two major brain regions known to express high levels of Ī±-Syn and undergo the highest levels of degeneration in human PD. Thus, tauopathy in PD may have a very restricted pattern of distribution.</p
    • ā€¦
    corecore